
 1

TREMOR: A TRIPLE MODULAR REDUNDANT FLIGHT COMPUTER AND FAULT-
TOLERANCE TESTBED FOR THE WPI PANSAT NANOSATELLITE

Ryan Angilly ECE B.S.

Department of Electrical and Computer Engineering
Worcester Polytechnic Institute, Worcester, Massachusetts

Advised by Professor William Michalson

Abstract
Elevated levels of radiation in Low Earth
Orbit (LEO) can cause several unexpected
behaviors in digital logic. These behaviors,
known as Single Event Effects (SEEs),
manifest themselves in two ways: unexpected
short circuits (Single Event Latch Ups), and
erroneous bit flips (Single Event Upsets).
Protecting memory from SEEs is usually done
via some type of SECDEC controller, and
protecting IO can be done in a number of
ways -- the simplest of which entails using
upper level protocols to verify data integrity.
Several techniques are currently employed to
deal with SEEs in microprocessors including
radiation hardening, radiation shielding,
software redundancy, and hardware
redundancy. TREMOR uses a hardware
solution based on an architecture known as
Triple Modular Redundancy to achieve SEE
tolerance. This paper discusses the TREMOR
FPGA system and how it will be used to
synchronize the processors and ensure that no
erroneous data propagates to the system bus.
It will also discuss how the flexibility of this
design will allow TREMOR to become a new
test bed for various implementations of the
TMR architecture.

TABLE OF CONTENTS
1. INTRODUCTION
2. TREMOR FPGA DESIGN
3. TREMOR/OPERATING SYSTEM INTERACTION
4. TREMOR CURRENT STATUS
5. TREMOR FUTURE WORK
6. CONCLUSIONS
7. ACKNOWLEDGEMENTS
8. REFERENCES

1. INTRODUCTION

Early last year, WPI received a grant from
NASA and the Air Force Research Labs
Space Vehicles Directorate (AFRL) to
participate in the third NanoSat Competition
(NS-3). The grant called for building a
nanosatellite – no more than 45cm tall and
45cm in diameter – on a fiscal budget of
$100,000 and a time frame of two years. WPI
was given this grant for three reasons. First
was the promise to research the possibility of
using powder metallurgy techniques for
manufacturing spacecraft. Second was the
desire to design a system capable of
calculating spacecraft orientation based on
multiple GPS measurements over a short
baseline (~30cm). Third was the creation of a
flight computer impervious to SEEs and built
from Commercial Off The Shelf (COTS)
parts. Out of this third objective, the TRiplE
MOdular Redundant Flight Computer,
TREMOR, was born [1].

Since the satellite will be traveling in a Low
Earth Orbit (LEO) of ~380km, elevated levels
of radiation caused by the lack of atmosphere
increase the probability of Single Event
Effects (SEE). SEEs come in two types:
Single Event Upsets (SEU) and Single Event
Latch-Ups (SEL). In an SEU, a high-energy
particle travels through a p-n junction in such
a way that it causes electron-hole pairs to
form around the junction and results in a
temporary current flow across the junction. If

 2

the current flow is large enough, this can
manifest itself as a bit value flipping from a
logical high to a logical low or visa-versa. In
an SEL, a high-energy particle travels through
a p-n junction much the same as an SEU.
However, if the particle travels through a
NAND gate (PNPN), it is possible for a self-
amplifying short circuit to occur, causing
increased power consumption, heat
dissipation, and the possibility of permanent
damage to digital circuitry. Three factors are
directly related to the probability of SEEs:

1. Element Size: As transistors get smaller,

they become more susceptible to SEEs as
the amount of charge in the device
decreases.

2. Clock Frequency: As clock frequency
increases, small perturbations in
transistor charge can translate into
complete state changes over a short clock
period.

3. Cross-Sectional Area: Since transistors are
susceptible to SEEs, a larger area of
transistors will result in a high probability
of SEEs [2].

Another effect of radiation is Total Ionizing
Dose (TID). Unlike SEEs, the TID is a rating
that denotes how much radiation a device can
accumulate before total failure. The TID for
the simplest device is usually around 10krads,
and the radiation experienced in LEO is
around 5krads per year. Since the TREMOR
mission is only 6 months, there is effectively
no need to worry about TID affecting the
parts of the flight computer [3].

Statistics have shown that at 380km, SEEs
can be expected at a rate of one every 15
minutes on an average flight computer.
Therefore, in order to create a flight computer
that can claim it is impervious to SEEs, the
memory subsystem and processing subsystem
must be protected to ensure that SEEs are
detected before they are allowed to propagate
and risk danger to the system. The flight
computer must also be able to correct these
errors before the next SEE occurs.

Figure 1-TREMOR Flight Computer Block Diagram

 3

2. TREMOR FPGA DESIGN

In the TMR architecture, three identical
processors operate in lockstep – executing the
same instruction at the same time – and
instead of outputting their signals unabated to
the system bus as in normal uniprocessor
systems, the processors output to an arbiter
that compares the outputs of each processor to
make sure that radiation has not caused bits to
erroneously flip either in the processor cache
or in the pipelines of the processor.

Figure 1 is a block diagram of the TREMOR
flight computer, which shows how the Intel
PXA255 processors are completely isolated
from the rest of the system via the TREMOR
FPGA System. All of the functionality of the
TREMOR FPGA comes from several state
machines, which govern how it interacts with
the rest of the flight computer. These state
machines are:

1. TMR Voter State Machine (TMR
VSM): Responsible for voting on
processor outputs, sending data to the
system bus, resetting processors that
have been affected by radiation, and
entering the Dual Modular Redundant
Voter State Machine when an SEU
occurs.

2. DMR Voter State Machine (DMR
VSM): Responsible for voting on the
output of two processors when the
TMR VSM has detected an SEU. It
stays in this state until the processors
are ready to be power cycled.

3. Processor Synchronization State
Machine (PSSM): Responsible for
ensuring the processors are
synchronized on power-up so that they
can run in lockstep.

4. General Purpose Input State Machine
(GSM): Responsible for synchronizing
general purpose inputs pins so that

changes on the pins arrive at the
processors at the same time.

5. Bi-directional Voter State Machine
(BVSM): Responsible for voting on
data pins when they are outputs, and
passing the data through to the
processor when they are inputs.

6. Random Error Generator State
Machine (REGS): Responsible for
helping to prove the viability of
TREMOR by introducing errors into
the inputs of the various Voting state
machines.

The TMR Voter State Machine has several
simple logic circuits implemented within it.
In order to determine the majority of three
binary signals, the circuit in Figure 2 is used
as the basis for the TMR VSM.

P1*P2

P1*P3

P2*P3

P1*P2+P2*P3+P1*P3

P1

P2

P3

System_Bus

Voter Circuit

Figure 2-Majority Voter Circuit

In Figure 2, the output is guaranteed to be
equal to the majority of the processors,
whether all three agree, or if only two agree
[4].

The circuit in Figure 3 is used to determine if
any of the processors are in disagreement. If
a processor is in disagreement, it is reset, and
the other processors are notified that it has
been reset due to an SEE. These notifications
are done through a series of dedicated IO
pins. Each processor has three pins as
dedicated inputs. If the TREMOR FPGA
resets processor 1, then a pin will be driven
high on the remaining two processors. This
will be detected by software, and a sequence
will begin to store the processor states so the

 4

system can reset and re-synchronize. This
will be discussed more in a later section.

P1'*P2*P3

P2'*P1*P3

P3'*P1*P2

P2*P1'*P3+P2'*P1*P3

P1'

P2'

P3'

P1

P2

P3

P3'*P1*P2'

P1'*P2*P3'

P1'*P3*P2'

P1*P2'*P3+P1'*P2*P3

P2*P3'*P1+P2'*P3*P1

P1_Reset

P2_Reset

P3_Reset

Reset Circuit

Figure 3- Minority Reset Circuit

When an SEU is detected, the TMR VSM
enters a degraded mode called Dual Modular
Redundant Voting. In the DMR VSM, the
voting is done in a similar way, except only
two values need to be compared. The two
values are passed through a logical AND, and
the value is passed immediately to the system
bus. If the two values do not agree, then an
SEU has occurred, and the system needs to be
immediately power cycled. Once the
operating system has finished storing the state
of the processors, it notifies the FPGA via a
dedicated pin and the DMR VSM cycles
power to all processors. Its last job is to start
the Processor Synchronization State Machine
(PSSM) once power is restored.

The creation of the PSSM was due to a
100.02 microsecond uncertainty in the time it
takes the Intel PXA255 to fetch the first
instruction after nRESET is unasserted. After
power is applied to the PXA255, a 10ms
delay must be created before taking the
processor out of reset to let the internal PLL
stabilize to 99.5Mhz. The processor must
then receive instructions to change its clock
speed to 199.1Mhz. This 199.1Mhz clock
coupled with the 100.02 microsecond delay
means that one processor could be 20,000
clock ticks ahead of another. Since TMR
architecture requires that the processors run in

lockstep, this is obviously unacceptable. The
answer was the creation of the Processor
Synchronization State Machine (PSSM).
Figure 4 is a top level representation of the
PSSM [5].

Repeat as necessary to send instruction
to change MSCS0[RDF] to 15
(Change bus cycle to 240ns)

R=Y[0] R=X[a]nCS[0] flips

Not all processors have
Executed NOPs yet…

Wait .

All processors have executed NOPs
Set the data buses equal to the second state machine

F[n]=1Processor n = 1, 2, 3 MDn=NOP

 F = 1

MDn=R

F=0

 P = 0
P=1P=0

 F = 1

F=0

MDn=MDS

Repeat as necessary to send instruction
to jump to zero

R=Y[a+1] R=Y[n]nCS[0] flips P = 1

Reset Clock to
199.1Mhz

Shorten Bus Cycle
to 20ns

F[0]

F[1]

F[2]

F

Figure 4-Processor Synchronization State Machine

There are two stages to the PSSM. First,
there are three asynchronous instances of the
PSSM, one for each processor. The first stage
is responsible for getting the processor into a
state where it is ready to be synchronized.
The PSSM starts immediately after the
nRESET signal is unasserted by the FPGA
and waits until the processor tries to fetch the
first instruction. Instead of voting on the
outputs of all three processors, each instance
of the PSSM sends the PXA255 several
instructions that are hard coded into the state
machine. First, the PSSM sends instructions
to change the clock speed to 199.1Mhz. Next,
it waits 10ms for the PLL to stabilize [6].

The default bus cycle time of the PXA255 is
250ns. In order to get the processors
synchronized below 250ns, the next state of
the PSSM sends instructions to change the
bus cycle time of the processor to 20ns. It
then starts to send the processor NOPs, and
sets a flag telling the other two instances of
the PSSM that it is now in a loop sending the
processor a NOP every 20ns.

 5

Once all three instances of the PSSM are in a
NOP loop, we know that the processors are
synchronized to within 20ns of one another.
At this point, the three PSSMs synchronize
and start sending instructions to all three
processor in unison. In this second stage, the
processors are sent instructions to change
their bus cycle times to the most efficient
value (currently 180ns) and jump to zero.
After the processors are instructed to jump to
zero, the TMR VSM starts, the next fetch is
voted on, and the processors begin operation.

Even though the processors are synchronized
by the PSSM, there is still an uncertainty of
20ns. This could be a problem when
programming the general-purpose input pins
as interrupts. Figure 5 illustrates the problem.

Figure 5- GPI Timing Problem

When the processor enters a bus cycle, it will
defer servicing interrupts until the bus cycle is
complete. If an interrupt were to reach the
processors at Time A in Figure 5, the lagging
processors would begin to service the
interrupts and would abandon the bus cycle
they have yet to start. Meanwhile the third
processor would remain in the bus access and
would result in the TREMOR FPGA
interpreting the situation as an SEE. To avoid
this situation, the General Purpose Input State
Machine (GSM) was created. The GSM does

not let the inputs change at the processor until
all three processors are in a bus cycle – Time
B in Figure 5. This not only ensures that
processors will service the interrupt, but it
also ensures that the interrupt will be serviced
at the same point in the instruction queue for
each processor. This is an added benefit due
to pipeline questions that were raised late in
the design. If the interrupts were to come in
at Time C on Figure 5, the processors would
service the interrupt and there would be no
SEE. The cache of the PXA255 can be setup
to use a write-through caching scheme. This
increases the number of bus cycles as the
cache tries to remain coherent with main
memory.

However, at Time C, the processors, although
being synchronized to within 20ns, are still
operating with a 4-instruction margin of error.
At Time C, all processors would service the
interrupt. They would execute the interrupt,
fetch instructions, and alter the caches. The
caches would remain coherent between the
processors, and there would be no problem –
until the processors returned from the
interrupt. If, in the course of operation, the
interrupt had requested an address that
replaced Cache Line A from Figure 6,
processor 1 would come back, not find the
instruction in cache, and try to fetch it from
memory. This would be interpreted by the
TREMOR FPGA as an SEU and the system
would enter degraded mode immediately.

Cache
Line A

Cache
Line B

Inst. 6 Inst. 7 Inst. 8

Inst. 9 Inst. 10

P1 P2

P3

Program Counter at Time C

Figure 6- Cache Page Example

There is an interesting tradeoff associated
with the behavior that was just discussed. If it
turns out that if the interrupt service latency
associated with this scheme turns out to be

Processor 1
nCS[0]

Processor 2
nCS[0]

Processor 3
nCS[0]

Time

A B C

 6

too much, we can allow interrupts to occur
during times of no bus access with the
understanding that an SEE could occur. The
system would service the interrupt
immediately, and there would be no added
latency. If an SEE did occur, it would be
corrected with no harm done to the system
and the flight computer would only suffer a
small performance degradation. Luckily, the
TREMOR system will be able to test both of
these scenarios with a simple reprogramming
of the FPGA.

The processor not only has to vote on outputs,
but it also has to vote on bi-directional pins
like the data bus. In order to accommodate
this special case, a version of the VSM was
created that used the output from the RDnWR
voter to detect if the processor is reading or
writing. The RDnWR pin on the PXA255
reflects what state the data bus is in – whether
it is reading or writing. The Bi-directional
VSM (BVSM) then enables and disables the
appropriate tri-state buffers based on the
outputs of that state machine. Figure 7 is a
schematic of the BVSM.

TMR VSM

ENB

P1_Reset

P2_Reset

P3_Reset

System _BusP1

P2

P3
E

NB

E
N

B

E
N

B

RDnWR

Figure 7-Bidirectional VSM

The timing of the RDnWR signal is such that
we can use it as an input to this voter with no
problems. Any changes in the direction of the
data bus are reflected in RDnWR well before
the changes actually take place.

The Random Error Generator State Machine
(REGS) is not vital to the operation of
TREMOR, but it is a valuable machine to
help aide in debugging the system. REGS
will be able to randomly modify input pins to
the various voter state machines at regular
intervals to verify the stability of TREMOR in
radiation environments.

4. TREMOR/OS INTERACTION

TREMOR is currently being slated to run a
release of RTLinux. There are several
instances where the Operating System needs
to interact with the TREMOR FPGA.

When an SEU occurs, the TREMOR FPGA
notifies the processors by driving a pin high.
This pin is configured to be an interrupt on all
of the processors. When the signal is driven
high, the operating system saves all the
processor states and process contexts in
FLASH. It also sets some bits in FLASH to
let itself know on reset that there are
processes waiting to be restored. Once all the
processes and states are saved, the operating
system sends a signal to the FPGA that it is
ready to be power cycled. Power is removed
from the processors, the processors are
cycled, they run through the PSSM, and begin
executing the bootloader software at the reset
vector.

The bootloader is responsible for
uncompressing the kernel from the PROM
and storing it in main memory. It is then
responsible for jumping to the start of the
operating system. However, it also checks to
see if the system was reset due to an SEE. If
the system was reset to the SEE, it finds the
processor states and process contexts in the
FLASH and restores them. Since power is
not cycled to the memory, there is no need to
copy the kernal from PROM to main memory
again. In fact, the operating system will be
able to pick up exactly where it left off. To

 7

the operating system, it will appear as if the
following psuedocode was executed:

1: save_processor_state();
2: save_process_contexts();
3: int pc = read_program_counter();
4: pc = modify_and_store_pc(pc);
5: notify_FPGA_ready();
6: /* Power is cycled */
7: iret();

Lines 1 and 2 save the state of the system.
Line 3 reads in the current program counter.
Line 4 modifies the program counter before it
is stored so that when it is popped out of
FLASH it will lead right to line 7 and allow
the interrupt to return to wherever it was
called from. As soon as line 5 is executed,
power is cycled to the processors. The
bootloaded software, after realizing there is a
context to be restored, is responsible for
manually restoring all register values, general
purpose IO pin directions, interrupt pin
assignments, power management registers,
and clock management registers. It will then
send the processors an instruction to jump to
PC and send it to line 7 in the psuedocode.

5. TREMOR CURRENT STATUS

From the beginning, the TREMOR project
was destined to be a multi-year design
project. To date, the current TREMOR team
has accomplished the following:

Schematic Completion: All the necessary
schematics have been completed.

Part selection: All of the parts for TREMOR
have been selected, and a full compatibilty
analysis has been completed. This includes
voltage compatiability, fan-out analysis,
loading compatibility, and timing analysis.

PANSAT Interfaces Defined: The interfaces
to all other PANSAT systems have been
defined.

FPGA Operational Outline: Although
nothing can be considered complete until a
working model has been built, the TREMOR
team believes that the foundation laid for the
TREMOR FPGA system is a strong one.
Extensive failure modes analysis has led to a
system that can deal with voting on output
pins and their failure modes; voting on
bidirectional pins; synchronizing the
processors to within acceptable parameters;
buffering inputs such that any changes arrive
at the processors at the same point in the
instruction stream; and communicating state
information across FPGAs, since the
TREMOR FPGA system is too large for a
single FPGA.

Extensive Docmentation: The Configuration
Management document tree that was modified
to create this MQP follows the WPI PANSAT
Configuration Management plan and will
allow for a smooth transition to the next team.

6. TREMOR FUTURE WORK

The flight competition review is schedule for
January 2005. By that time, TREMOR must
be operational. This section outlines what is
left for TREMOR to be considered complete.

Finalizing Power Delivery System: The
FPGA must have the ability to control the
power to the processors in much the same
way that the Power Subsystem must have the
ability to control the power to the entire flight
computer. These power relays must be
selected, either by the TREMOR team
independently, or by the Power team, before
layout can be finalized.

PCB Layout: The PCB need to be layed out,
ordered and populated.

Radiation Tests: WPI’s nuclear reactor is
capable of recreating the orbital environment
for TREMOR. A finish product can be

 8

irradiated by the reactor in an attempt to
detect SEEs and see if TREMOR behaves as
expected.

7. CONCLUSIONS

The TREMOR flight computer will allow the
software of WPIs PANSAT Nanosatellite to
operate completely oblivious to radiation
effects. By the end of this project, TREMOR
will have proven itself as a robust solution to
the radiation effects problem and will act as a
test-bed for future researchers to explore
radiation tolerance in their labs.

8. ACKNOWLEDGEMENTS

I would like to thank my teammates, Daniel
DeBiasio and Mitchell Lauer, for their
dedicated hard work in this project. I would
also like to thanks Ritesh Shuklah for his help
in evolving TREMOR from a simple flight
computer to a fault-tolerance test bed. Lastly,
I would like to thank Professor William
Michalson for his guidance through the
project, and on this paper.

9. REFERENCES

[1] Air Force Research Laboratory, “AFRL
Internal Cargo Unit User’s Guide,” Space
Vehicles Directorate, Kirtland AFB, NM,
2003.

[2] P. Shirvani, “Fault-Tolerant Computing
for Radiation Environment,” Center for
Reliable Computing at Stanford University,
1997.

[3] M.N. Lovellette, “Strategies for Fault-
Tolerant, Space-Based Computing: Lessons
Learned from the ARGOS Testbed.”

[4] S. Mitra, E. McCluskey, “Word-Voter: A
New Voter Design for Triple Modular

Redundant Systems,” Center for Reliable
Computing at Stanford University, 2000.

[5] “Intel® PXA255 Processor Electrical,
Mechanical, and Thermal Specification,” Intel
Corporation, Hudson, MA, March 2003.

[6] “Intel® XScale Microarchitecture for the
PXA255 Processor,” Intel Corporation,
Hudson, MA, March 2003.

