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Abstract 
Elevated levels of radiation in Low Earth 
Orbit (LEO) can cause several unexpected 
behaviors in digital logic.  These behaviors, 
known as Single Event Effects (SEEs), 
manifest themselves in two ways: unexpected 
short circuits (Single Event Latch Ups), and 
erroneous bit flips (Single Event Upsets).  
Protecting memory from SEEs is usually done 
via some type of SECDEC controller, and 
protecting IO can be done in a number of 
ways -- the simplest of which entails using 
upper level protocols to verify data integrity.  
Several techniques are currently employed to 
deal with SEEs in microprocessors including 
radiation hardening, radiation shielding, 
software redundancy, and hardware 
redundancy.  TREMOR uses a hardware 
solution based on an architecture known as 
Triple Modular Redundancy to achieve SEE 
tolerance.  This paper discusses the TREMOR 
FPGA system and how it will be used to 
synchronize the processors and ensure that no 
erroneous data propagates to the system bus.  
It will also discuss how the flexibility of this 
design will allow TREMOR to become a new 
test bed for various implementations of the 
TMR architecture. 
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1. INTRODUCTION 

 
Early last year, WPI received a grant from 
NASA and the Air Force Research Labs 
Space Vehicles Directorate (AFRL) to 
participate in the third NanoSat Competition 
(NS-3).  The grant called for building a 
nanosatellite – no more than 45cm tall and 
45cm in diameter – on a fiscal budget of 
$100,000 and a time frame of two years.  WPI 
was given this grant for three reasons.  First 
was the promise to research the possibility of 
using powder metallurgy techniques for 
manufacturing spacecraft.  Second was the 
desire to design a system capable of 
calculating spacecraft orientation based on 
multiple GPS measurements over a short 
baseline (~30cm).  Third was the creation of a 
flight computer impervious to SEEs and built 
from Commercial Off The Shelf (COTS) 
parts.  Out of this third objective, the TRiplE 
MOdular Redundant Flight Computer, 
TREMOR, was born [1]. 
 
Since the satellite will be traveling in a Low 
Earth Orbit (LEO) of ~380km, elevated levels 
of radiation caused by the lack of atmosphere 
increase the probability of Single Event 
Effects (SEE).  SEEs come in two types: 
Single Event Upsets (SEU) and Single Event 
Latch-Ups (SEL).  In an SEU, a high-energy 
particle travels through a p-n junction in such 
a way that it causes electron-hole pairs to 
form around the junction and results in a 
temporary current flow across the junction.  If 
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the current flow is large enough, this can 
manifest itself as a bit value flipping from a 
logical high to a logical low or visa-versa.  In 
an SEL, a high-energy particle travels through 
a p-n junction much the same as an SEU.  
However, if the particle travels through a 
NAND gate (PNPN), it is possible for a self-
amplifying short circuit to occur, causing 
increased power consumption, heat 
dissipation, and the possibility of permanent 
damage to digital circuitry.  Three factors are 
directly related to the probability of SEEs: 
 
1. Element Size:  As transistors get smaller, 

they become more susceptible to SEEs as 
the amount of charge in the device 
decreases. 

2. Clock Frequency:  As clock frequency 
increases, small perturbations in 
transistor charge can translate into 
complete state changes over a short clock 
period. 

3. Cross-Sectional Area:  Since transistors are 
susceptible to SEEs, a larger area of 
transistors will result in a high probability 
of SEEs [2]. 

 
Another effect of radiation is Total Ionizing 
Dose (TID).  Unlike SEEs, the TID is a rating 
that denotes how much radiation a device can 
accumulate before total failure.  The TID for 
the simplest device is usually around 10krads, 
and the radiation experienced in LEO is 
around 5krads per year.  Since the TREMOR 
mission is only 6 months, there is effectively 
no need to worry about TID affecting the 
parts of the flight computer [3]. 
 
Statistics have shown that at 380km, SEEs 
can be expected at a rate of one every 15 
minutes on an average flight computer.  
Therefore, in order to create a flight computer 
that can claim it is impervious to SEEs, the 
memory subsystem and processing subsystem 
must be protected to ensure that SEEs are 
detected before they are allowed to propagate 
and risk danger to the system.  The flight 
computer must also be able to correct these 
errors before the next SEE occurs. 
 
 
 

Figure 1-TREMOR Flight Computer Block Diagram
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2. TREMOR FPGA DESIGN 
 

In the TMR architecture, three identical 
processors operate in lockstep – executing the 
same instruction at the same time – and 
instead of outputting their signals unabated to 
the system bus as in normal uniprocessor 
systems, the processors output to an arbiter 
that compares the outputs of each processor to 
make sure that radiation has not caused bits to 
erroneously flip either in the processor cache 
or in the pipelines of the processor.   
 
Figure 1 is a block diagram of the TREMOR 
flight computer, which shows how the Intel 
PXA255 processors are completely isolated 
from the rest of the system via the TREMOR 
FPGA System.  All of the functionality of the 
TREMOR FPGA comes from several state 
machines, which govern how it interacts with 
the rest of the flight computer.  These state 
machines are: 
 

1. TMR Voter State Machine (TMR 
VSM): Responsible for voting on 
processor outputs, sending data to the 
system bus, resetting processors that 
have been affected by radiation, and 
entering the Dual Modular Redundant 
Voter State Machine when an SEU 
occurs. 

2. DMR Voter State Machine (DMR 
VSM):  Responsible for voting on the 
output of two processors when the 
TMR VSM has detected an SEU.  It 
stays in this state until the processors 
are ready to be power cycled. 

3. Processor Synchronization State 
Machine (PSSM):  Responsible for 
ensuring the processors are 
synchronized on power-up so that they 
can run in lockstep. 

4. General Purpose Input State Machine 
(GSM): Responsible for synchronizing 
general purpose inputs pins so that 

changes on the pins arrive at the 
processors at the same time. 

5. Bi-directional Voter State Machine 
(BVSM): Responsible for voting on 
data pins when they are outputs, and 
passing the data through to the 
processor when they are inputs. 

6. Random Error Generator State 
Machine (REGS):  Responsible for 
helping to prove the viability of 
TREMOR by introducing errors into 
the inputs of the various Voting state 
machines. 

  
The TMR Voter State Machine has several 
simple logic circuits implemented within it.  
In order to determine the majority of three 
binary signals, the circuit in Figure 2 is used 
as the basis for the TMR VSM. 

P1*P2

P1*P3

P2*P3

P1*P2+P2*P3+P1*P3

P1

P2

P3

System_Bus

Voter Circuit

 
Figure 2-Majority Voter Circuit 
 
In Figure 2, the output is guaranteed to be 
equal to the majority of the processors, 
whether all three agree, or if only two agree 
[4].  
 
The circuit in Figure 3 is used to determine if 
any of the processors are in disagreement.  If 
a processor is in disagreement, it is reset, and 
the other processors are notified that it has 
been reset due to an SEE.  These notifications 
are done through a series of dedicated IO 
pins.  Each processor has three pins as 
dedicated inputs.  If the TREMOR FPGA 
resets processor 1, then a pin will be driven 
high on the remaining two processors.  This 
will be detected by software, and a sequence 
will begin to store the processor states so the 
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system can reset and re-synchronize.  This 
will be discussed more in a later section. 
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Figure 3- Minority Reset Circuit 
 
When an SEU is detected, the TMR VSM 
enters a degraded mode called Dual Modular 
Redundant Voting.  In the DMR VSM, the 
voting is done in a similar way, except only 
two values need to be compared.  The two 
values are passed through a logical AND, and 
the value is passed immediately to the system 
bus.  If the two values do not agree, then an 
SEU has occurred, and the system needs to be 
immediately power cycled.  Once the 
operating system has finished storing the state 
of the processors, it notifies the FPGA via a 
dedicated pin and the DMR VSM cycles 
power to all processors.  Its last job is to start 
the Processor Synchronization State Machine 
(PSSM) once power is restored. 
 
The creation of the PSSM was due to a 
100.02 microsecond uncertainty in the time it 
takes the Intel PXA255 to fetch the first 
instruction after nRESET is unasserted.  After 
power is applied to the PXA255, a 10ms 
delay must be created before taking the 
processor out of reset to let the internal PLL 
stabilize to 99.5Mhz.  The processor must 
then receive instructions to change its clock 
speed to 199.1Mhz.  This 199.1Mhz clock 
coupled with the 100.02 microsecond delay 
means that one processor could be 20,000 
clock ticks ahead of another.  Since TMR 
architecture requires that the processors run in 

lockstep, this is obviously unacceptable.  The 
answer was the creation of the Processor 
Synchronization State Machine (PSSM).  
Figure 4 is a top level representation of the 
PSSM [5]. 
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Figure 4-Processor Synchronization State Machine 
 
There are two stages to the PSSM.  First, 
there are three asynchronous instances of the 
PSSM, one for each processor.  The first stage 
is responsible for getting the processor into a 
state where it is ready to be synchronized.  
The PSSM starts immediately after the 
nRESET signal is unasserted by the FPGA 
and waits until the processor tries to fetch the 
first instruction.  Instead of voting on the 
outputs of all three processors, each instance 
of the PSSM sends the PXA255 several 
instructions that are hard coded into the state 
machine.  First, the PSSM sends instructions 
to change the clock speed to 199.1Mhz.  Next, 
it waits 10ms for the PLL to stabilize [6]. 
 
The default bus cycle time of the PXA255 is 
250ns.  In order to get the processors 
synchronized below 250ns, the next state of 
the PSSM sends instructions to change the 
bus cycle time of the processor to 20ns.  It 
then starts to send the processor NOPs, and 
sets a flag telling the other two instances of 
the PSSM that it is now in a loop sending the 
processor a NOP every 20ns.  
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Once all three instances of the PSSM are in a 
NOP loop, we know that the processors are 
synchronized to within 20ns of one another.  
At this point, the three PSSMs synchronize 
and start sending instructions to all three 
processor in unison.  In this second stage, the 
processors are sent instructions to change 
their bus cycle times to the most efficient 
value (currently 180ns) and jump to zero.  
After the processors are instructed to jump to 
zero, the TMR VSM starts, the next fetch is 
voted on, and the processors begin operation. 
 
Even though the processors are synchronized 
by the PSSM, there is still an uncertainty of 
20ns.  This could be a problem when 
programming the general-purpose input pins 
as interrupts.  Figure 5 illustrates the problem. 
 

Figure 5- GPI Timing Problem 
 
When the processor enters a bus cycle, it will 
defer servicing interrupts until the bus cycle is 
complete.  If an interrupt were to reach the 
processors at Time A in Figure 5, the lagging 
processors would begin to service the 
interrupts and would abandon the bus cycle 
they have yet to start.  Meanwhile the third 
processor would remain in the bus access and 
would result in the TREMOR FPGA 
interpreting the situation as an SEE.  To avoid 
this situation, the General Purpose Input State 
Machine (GSM) was created.  The GSM does 

not let the inputs change at the processor until 
all three processors are in a bus cycle – Time 
B in Figure 5.  This not only ensures that 
processors will service the interrupt, but it 
also ensures that the interrupt will be serviced 
at the same point in the instruction queue for 
each processor.  This is an added benefit due 
to pipeline questions that were raised late in 
the design.  If the interrupts were to come in 
at Time C on Figure 5, the processors would 
service the interrupt and there would be no 
SEE.  The cache of the PXA255 can be setup 
to use a write-through caching scheme.  This 
increases the number of bus cycles as the 
cache tries to remain coherent with main 
memory. 
 
However, at Time C, the processors, although 
being synchronized to within 20ns, are still 
operating with a 4-instruction margin of error.  
At Time C, all processors would service the 
interrupt.  They would execute the interrupt, 
fetch instructions, and alter the caches.  The 
caches would remain coherent between the 
processors, and there would be no problem – 
until the processors returned from the 
interrupt.  If, in the course of operation, the 
interrupt had requested an address that 
replaced Cache Line A from Figure 6, 
processor 1 would come back, not find the 
instruction in cache, and try to fetch it from 
memory.  This would be interpreted by the 
TREMOR FPGA as an SEU and the system 
would enter degraded mode immediately. 
 

Cache 
Line A

Cache 
Line B

Inst. 6 Inst. 7 Inst. 8

Inst. 9 Inst. 10

P1 P2

P3

Program Counter at Time C

 
Figure 6- Cache Page Example 
 
There is an interesting tradeoff associated 
with the behavior that was just discussed.  If it 
turns out that if the interrupt service latency 
associated with this scheme turns out to be 

Processor 1
nCS[0]

Processor 2
nCS[0]

Processor 3
nCS[0]

Time

A B C
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too much, we can allow interrupts to occur 
during times of no bus access with the 
understanding that an SEE could occur.  The 
system would service the interrupt 
immediately, and there would be no added 
latency.  If an SEE did occur, it would be 
corrected with no harm done to the system 
and the flight computer would only suffer a 
small performance degradation.  Luckily, the 
TREMOR system will be able to test both of 
these scenarios with a simple reprogramming 
of the FPGA. 
 
The processor not only has to vote on outputs, 
but it also has to vote on bi-directional pins 
like the data bus.  In order to accommodate 
this special case, a version of the VSM was 
created that used the output from the RDnWR 
voter to detect if the processor is reading or 
writing.  The RDnWR pin on the PXA255 
reflects what state the data bus is in – whether 
it is reading or writing.  The Bi-directional 
VSM (BVSM) then enables and disables the 
appropriate tri-state buffers based on the 
outputs of that state machine.  Figure 7 is a 
schematic of the BVSM. 
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Figure 7-Bidirectional VSM 
 
The timing of the RDnWR signal is such that 
we can use it as an input to this voter with no 
problems.  Any changes in the direction of the 
data bus are reflected in RDnWR well before 
the changes actually take place. 
 

The Random Error Generator State Machine 
(REGS) is not vital to the operation of 
TREMOR, but it is a valuable machine to 
help aide in debugging the system.  REGS 
will be able to randomly modify input pins to 
the various voter state machines at regular 
intervals to verify the stability of TREMOR in 
radiation environments. 
 

4.  TREMOR/OS INTERACTION 
 
TREMOR is currently being slated to run a 
release of RTLinux.  There are several 
instances where the Operating System needs 
to interact with the TREMOR FPGA. 
 
When an SEU occurs, the TREMOR FPGA 
notifies the processors by driving a pin high.  
This pin is configured to be an interrupt on all 
of the processors.  When the signal is driven 
high, the operating system saves all the 
processor states and process contexts in 
FLASH.  It also sets some bits in FLASH to 
let itself know on reset that there are 
processes waiting to be restored.  Once all the 
processes and states are saved, the operating 
system sends a signal to the FPGA that it is 
ready to be power cycled.  Power is removed 
from the processors, the processors are 
cycled, they run through the PSSM, and begin 
executing the bootloader software at the reset 
vector. 
 
The bootloader is responsible for 
uncompressing the kernel from the PROM 
and storing it in main memory.  It is then 
responsible for jumping to the start of the 
operating system.  However, it also checks to 
see if the system was reset due to an SEE.  If 
the system was reset to the SEE, it finds the 
processor states and process contexts in the 
FLASH and restores them.  Since power is 
not cycled to the memory, there is no need to 
copy the kernal from PROM to main memory 
again.  In fact, the operating system will be 
able to pick up exactly where it left off.  To 
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the operating system, it will appear as if the 
following psuedocode was executed: 
 
1:  save_processor_state(); 
2:  save_process_contexts(); 
3:  int pc = read_program_counter(); 
4:  pc = modify_and_store_pc(pc); 
5:  notify_FPGA_ready(); 
6:  /* Power is cycled */ 
7:  iret(); 

 
Lines 1 and 2 save the state of the system.  
Line 3 reads in the current program counter.  
Line 4 modifies the program counter before it 
is stored so that when it is popped out of 
FLASH it will lead right to line 7 and allow 
the interrupt to return to wherever it was 
called from.  As soon as line 5 is executed, 
power is cycled to the processors.  The 
bootloaded software, after realizing there is a 
context to be restored, is responsible for 
manually restoring all register values, general 
purpose IO pin directions, interrupt pin 
assignments, power management registers, 
and clock management registers.  It will then 
send the processors an instruction to jump to 
PC and send it to line 7 in the psuedocode. 
 

5. TREMOR CURRENT STATUS 
 

From the beginning, the TREMOR project 
was destined to be a multi-year design 
project.  To date, the current TREMOR team 
has accomplished the following: 
 
Schematic Completion: All the necessary 
schematics have been completed. 
 
Part selection:  All of the parts for TREMOR 
have been selected, and a full compatibilty 
analysis has been completed.  This includes 
voltage compatiability, fan-out analysis, 
loading compatibility, and timing analysis. 
 
PANSAT Interfaces Defined:  The interfaces 
to all other PANSAT systems have been 
defined. 
 

FPGA Operational Outline:  Although 
nothing can be considered complete until a 
working model has been built, the TREMOR 
team believes that the foundation laid for the 
TREMOR FPGA system is a strong one.  
Extensive failure modes analysis has led to a 
system that can deal with voting on output 
pins and their failure modes; voting on 
bidirectional pins; synchronizing the 
processors to within acceptable parameters; 
buffering inputs such that any changes arrive 
at the processors at the same point in the 
instruction stream; and communicating state 
information across FPGAs, since the 
TREMOR FPGA system is too large for a 
single FPGA. 
 
Extensive Docmentation:  The Configuration 
Management document tree that was modified 
to create this MQP follows the WPI PANSAT 
Configuration Management plan and will 
allow for a smooth transition to the next team. 
 

6. TREMOR FUTURE WORK 
 
The flight competition review is schedule for 
January 2005.  By that time, TREMOR must 
be operational.  This section outlines what is 
left for TREMOR to be considered complete. 
 
Finalizing Power Delivery System:  The 
FPGA must have the ability to control the 
power to the processors in much the same 
way that the Power Subsystem must have the 
ability to control the power to the entire flight 
computer.  These power relays must be 
selected, either by the TREMOR team 
independently, or by the Power team, before 
layout can be finalized. 
 
PCB Layout:  The PCB need to be layed out, 
ordered and populated. 
 
Radiation Tests:  WPI’s nuclear reactor is 
capable of recreating the orbital environment 
for TREMOR.  A finish product can be 
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irradiated by the reactor in an attempt to 
detect SEEs and see if TREMOR behaves as 
expected. 
 

7. CONCLUSIONS 
 
The TREMOR flight computer will allow the 
software of WPIs PANSAT Nanosatellite to 
operate completely oblivious to radiation 
effects.  By the end of this project, TREMOR 
will have proven itself as a robust solution to 
the radiation effects problem and will act as a 
test-bed for future researchers to explore 
radiation tolerance in their labs. 
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